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ABSTRACT

A comparison was made between two approaches to predict acoustic emission waveformsin
thin plates. A normal mode solution method for Mindlin plate theory was used to predict
the response of the flexural plate mode to a point source, step-function load, applied on the
plate surface. The second approach used a dynamic finite element method to model the
problem using equations of motion based on exact linear elasticity. Calculations were made
using properties for both isotropic (aluminum) and anisotropic (unidirectional
graphite/epoxy composite) materials. For smulations of anisotropic plates, propagation
along multiple directions was evaluated. In genera, agreement between the two theoretical
approacheswas good. Discrepanciesin the waveforms at longer times were caused by
differencesin reflections from the lateral plate boundaries. These differences resulted from
the fact that the two methods used different boundary conditions. At shorter timesin the

signas, before reflections, the dight discrepanciesin the waveforms were attributed to



limitations of Mindlin plate theory, which is an approximate plate theory. The advantages of
the finite element method are that it used the exact linear elagticity solutions, and that it can
be used to model real source conditions and complicated, finite specimen geometries as well
asthick plates. These advantages come at a cost of increased computational difficulty,
requiring lengthy cal culations on workstations or supercomputers. The Mindlin plat theory
solutions, meanwhile, can be quickly generated on personal computers. Specimens with
finite geometry can also be modeled. However, only limited simple geometries such as
circular or rectangular plates can easily be accommodated with the normal mode solution
technique. Likewise, very limited source configurations can be modeled and plate theory is

applicable only to thin plates.
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INTRODUCTION

The ability to accurately model acoustic emission (AE) waveforms offers significant
potential for improving the interpretation of AE data. Applications of such modelsinclude
the determination of optimal placement of sensorsin an AE test, the scaling of AE results
from laboratory coupons to structures of practical interest, the calibration of transducers,
and insight into inversion of AE datato eliminate extraneous noise and identify source
mechanisms. However, in much of the early work “* on modeling AE waveforms,
approaches introduced in seismology have been applied to model the propagation of bulk
and surface waves. Such models could be used to predict waveforms only in an infinite
half-space, or in aplate of infinite lateral extent. In the plate geometry, the results were vaid

only for short propagation distances of less than ten plate thicknesses.

The geometries of many practical structures of interest for AE monitoring, though, are

neither infinitein lateral extent, nor composed of thick plates or large components where



propagation of bulk wavesisdominant. Thin plates, pipes, shells, rods, and beams are
common. In such geometries, the distance from the receiver to the AE source is often many
times the specimen thickness and the wave propagation is dominated by guided modes.
Much experimental effort recently ¢*% has focused on guided wave propagation effectsin
the interpretation of AE signals. Thisresearch has led to improved accuracy in the locating
the sources of emission, to the ability to better discriminate and eliminate extraneous noise

signas, and to enhanced identification of AE sources.

Following this trend, recent theoretical efforts to model AE waveforms have also considered
guided wave propagation. Integral transform techniques have been used to predict the Lamb
wave response for AE sources in anisotropic composite materials “**2, Solutions were
obtained for both exact elasticity theory and approximate laminated plate theory, and were
shown to bein agreement with experimental observations. However, alimitation of this
theoretical approach isthat it again assumes a geometry of an infinite plate thusignoring
reflections from plate edges. A norma mode solution technique for classical plate theory
has also been used to provide solutions for the flexural plate mode (lowest order
antisymmetric Lamb mode) in plates with finite geometries *®. Results for predictions of
the flexural plate mode in an isotropic material were shown to agree with experimental
observations of smulated AE signalsfor very low frequencies where thistheory isvalid.
The extension of this solution technique to Mindlin plate theory (MPT) @ which more
accurately predicts the flexural plate mode at higher frequencies, is considered in this paper.
Such an approach was a so recently used for the prediction of flexural plate mode AE
waveforms in isotropic plates and shown to bein agreement with experimental
measurements of simulated AE signals®®. In that work, solutions were also developed for
the Mindlin-Medick plate theory to predict the extensional mode in isotropic plates as well.
However, comparisons with exact linear elagticity solutions did not provide as good an

agreement. A dynamic finite element method (DFEM) has been developed for predicting



AE waveformsin thefar fild in plates ®*. This approach aso allows the consideration of
plates of finite lateral extent. Theoretical predictions from this method were shown to bein
good agreement with experimental measurements of signals generated by asimulated AE

source.

In this research, theoretical predictions were compared from both DFEM and MPT for the
flexural plate mode component of asimulated AE signal. Calculations were made with both
isotropic (aluminum) and anisotropic (unidirectional graphite/epoxy) material properties.

For the anisotropic material, severa different directions of propagation were considered.

The DFEM has anumber of advantagesin that it is based on exact linear elasticity theory
and can be used for both isotropic and anisotropic media. Additionally, the method has the
potential to model realistic structural geometries to include propagation effects such as
signal reflections. Realistic source geometries such as buried dipole sources can aso be
modeled. However, the DFEM calculations are computationally intensive requiring both
significant memory and processor time. Currently, they can be made only on workstation
or higher-class machines, and models take many hours or daysto complete. The normal
mode solutions to MPT are much less computationally demanding. They can be made on
personal computers within minutes. Although both isotropic and anisotropic materias, as
well asfinite geometries, can be modeled, source configurations and specimen geometries
which can be considered are limited. Also, MPT is an approximate theory and useful only
for predicting the flexural mode response. Other plate theories, such asthe Mindlin-
Medick plate theory can predict the extensional mode, but typically do not provide as good

an agreement with experimental measurements or predictions based on exact elasticity .

MINDLIN PLATE THEORY



Mindlin @ improved on classical plate theory for isotropic media by including the effects
of shear deformation and rotatory inertia. This approach was later extended to anisotropic
laminated composites *® and used to predict flexural mode dispersion 9 in composites.
The normal mode solution technique of MPT used in this research was devel oped for
predicting the response of an orthotropic laminated plate to an impact @ . However, waves
propagating away from the impact site were not considered in that work, as solutions were
examined for the displacement only at the position of impact. More recently, the normal
mode solution for MPT was used to model AE waveforms®®.  However, results only for

isotropic materials were presented.

Asthe derivations of MPT and the normal mode solution approach are available in the
references mentioned above, they are not repeated in detail here. A specially orthotropic
composite laminate, which is a symmetric laminate with pliesin the 0 and/or 90 degree
directions only, is assumed with the z axis normal to the plate. The normal mode solution
for the z axis displacement (w) is presented. The plate was assumed to be rectangular with a
thickness (h), length (a) along the x axis, and width (b) along they axis. Simply supported
boundary conditions were assumed along the plate edges. The materia properties were the
density (r ), theclassical laminated plate bending stiffness coefficients (D,,, D,,, D,,, and
D), and shear correction bending stiffnesses (A,, and A.;). A step function point |oad of
amplitude P was assumed to occur on the plate surface at x = X, y=z,andtime t=0.

The resulting displacement (w) at any point (xy) asafunction of timeisthen given by
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Theterm b, represents the frequency for the given norma mode. An approximate solution
is obtained by calculating the summations up to given values of n and m. The resulting
waveform then contains frequencies only up to the value of b, for these maximum values.

For dl calculationsin thiswork, atotal of n = m =200 norma modes were summed.

For an isotropic material, the following relationships hold between the plate stiffness

coefficients and the Y oung’s modulus (E), Poisson’ s ratio (n), and the shear modulus (G):
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and k isthe shear correction coefficient. A value of 5/6 for k* has been derived for
materials which are homogeneous through the thickness of the plate ®”. Thiswas the case

for both the auminum and the unidirectional graphite/epoxy modeled in this work.

DYNAMIC FINITE ELEMENT METHOD

The DFEM used in this research has been reported elsewhere " and the details are not
repeated here. Both atwo-dimensional, cylindrically symmetric model ©, which is useful
for isotropic materials, and athree-dimensional model ", which can handle anisotropic
media, have been developed. The results from both models have been compared with
experimental waveforms generated by simulated sources (pencil lead fractures) on aplate
surface and acquired with an absolutely calibrated sensor. Model predictions and
experimental measurements were in excellent agreement for isotropic materials. Because of
the lower complexity and memory requirements of the two-dimensional approach, models
can be run with either decreased cell size (increased spatial resolution) or much shorter
calculation times. However, in addition to modeling anisotropic media, the three-
dimensional approach isrequired to model realistic specimen geometries (other than a
round plate with the source at the center) as well as realistic sources such as a non-

axisymmetric buried dipole.

In both cases aleapfrog approximation in time and linear elementsin spaceisused. Stress
free boundary conditions are assumed along the top and bottom surfaces as well asaong

the outer edges of the plate. To mode a step function in the DFEM, alinear ramp with rise



time smaller than the time step can be used. However, such afast rise time can produce
numerical transientsin the calculated signal. For these calculations, the time step was
approximately 0.02 ms while the rise time of the linear ramp source was 0.1 ns The effect
of thisrise time was evaluated by increasing it up to several microseconds in otherwise
identical model calculations. For risetimes of lessthan 1 ns, no differences were observed
in the calculated flexural waveforms, which suggested that the linear ramp source with rise
times over this range converged to a step function source for thismode. Likewise, the point
source used in the plate theory calculations could not be modeled by the DFEM. The
previous work has shown that the source diameter must be at least four time the cell
dimension for sources with fast rise timesto avoid introducing high frequency numerical
transients. For all of these calculations, this minimum source size was used. For the high
gpatial resolution used in the two-dimensional model, this source diameter was quite small
and approximated a point source well. Aswith the source rise time, the effect of the source
diameter on the model results were evaluated by increasing the diameter up to several times
the minimum value. Again, no effect was observed on the calculated waveforms. Because
of the limited spatial resolution of the three-dimensional model, the minimum source
diameter waslarger. However, good agreement with the plate theory calculations was still

obsarved.

ISOTROPIC MATERIAL (ALUMINUM)

The materia properties for aluminum were used for both MPT and DFEM calculations.
The density was assumed to be 2770 kg/m?, Y oung’ s modul us to be 73.0 GPa, and
Poisson’sratio to be 0.3. The plate thickness was taken as 3.175 mm. For MPT, a
rectangular plate geometry was modeled with alength along x of 0.508 m and width alongy

of 0.381 m. The source was positioned at x = 0.254 m, y = 0.127 m. Five different receiver



positions were modeled, al along the x = 0.254 m line, at positions ranging from y = 0.2032
m to 0.3048 m at intervals of 2.54 cm. Thus, the distance from the source to the receiver
varied from 7.62 cm to 17.78 cm (24 to 56 plate thicknesses). For the two-dimensional
DFEM calculations, the radius was assumed to be 0.254 m, with the source positioned at the
center of the plate (r = 0). The cell size, whichwas uniforminr and z, was 0.079 mm
which provided 40 elements through the thickness. Again, five receivers were modeled at
positions ranging from 7.62 cmto 17.78 cmin 2.54 cmintervals. So that only the
asymmetric Lamb modes could be obtained from the DFEM results, smulated point
receivers were placed both on top and bottom of the plate in the model. Then, by adding the
signasfrom the top and bottom for a given location and dividing by two, the symmetric
Lamb mode components were eliminated |eaving only the asymmetric components. For
both model calculations, the amplitude of the monopole source force function was assumed

tobe 1 N.

In Fig. 1, the model waveforms from both methods at propagation distances of 7.62, 12.7,
and 17.78 cm are compared over afull 150 nstime scae. Overall, the agreement between
the two methodsisgood. At longer times, thereis some discrepancy between the signals,
which was attributed to the effect of differences in reflections from plate edges. Asthe plate
geometries and boundary conditions are different for the two methods, agreement in the
prediction of reflected signalsis not expected. The significant dispersion of thismodeis
observed when looking at the changes in the signal shape at different distances of
propagation. Fig. 2 showsthe same signals but at expanded time scalesfor the early arrival
portion of the signals. More discrepancy between the two methodsis observed for the
higher frequenciesin the early arrival. There are severa possible explanations for these
differences. Thefirst could be the difference in the input force function between the step
function used for MPT and the fast rise time linear ramp used for DFEM. However, the

effect of varying the rise time was investigated and it is not believed that thisisasignificant



contribution to the differences. Another explanation could be the difference between the
source diameter from the point source assumed in the plate theory model and the finite, but
small, source used for the finite element calculations. Again, this was evaluated with the
DFEM by varying the source diameter, with no significant changes observed. The final and
most likely cause of the discrepanciesis due to the approximate nature of MPT. Sincethe
DFEM is based on exact linear elasticity and has been confirmed by comparison with
experimental measurements, it is assumed that the differences observed are due to

limitations of MPT.

ANISOTROPIC MATERIAL (GRAPHITE/EPOXY)

The composite material model ed was assumed to be a unidirectional materia of thickness
2.54 mm. The elastic properties were assumed to be those of AS4/3502 graphite/epoxy.
The axes were designated such that the x axis was along the fibers, the y axis was normal to
the fibersin the plane of the plate, and the z axis was perpendicular to the plane of the plate.
Asaunidirectional material, the materia was assumed to be transversely isotropic (nine
nonzero elastic stiffness moduli, five of which are independent). The values of these
coefficients, which were used in the DFEM calculations, are givenin Tablel. The
coefficients used in the MPT ca culations, which were calculated from the elastic properties
inTablel, areshownin Tablell.

Calculations were made for propagation along the fiber direction (0°), perpendicular to the
fibers (90°), and at 45°. The three-dimensional DFEM model was used to include effects
of anisotropy. Thisallowed the lateral geometry of arectangular plate to be used for the
DFEM and MPT models. However, it is noted that the boundary conditions along the
edges were still different (stressfree for finite el ement method and simply supported for
plate theory). Thus, agreement at long times where significant reflection components are

contained in the signalsis not expected. Also, athough the lateral plate dimensions were the

10



same for agiven MPT and DFEM calculations for a particular propagation direction, they
were not the same for all directions. Thiswas because of the much larger memory
requirements of the three-dimensiond finite e ement method which placed limitations on the
dimensions of the plate. For each direction, lateral dimensions, source location, and receiver
positions were chosen to minimize the effects of reflections from the edges. For the

0° propagation direction, a, the lateral dimension along x was 0.254 m while b, the lateral
dimension along y was 0.1524 m. For 90°, a was 0.1524 m and b was 0.254 m, and for
45°, a and b were both 0.2286 m. For all propagation directions, the distance from the
source to receiver was varied from 7.62 to 15.24 cm (30 to 60 plate thicknesses) at intervals
of 2.54 cm. However, results are shown only for amaximum propagation distance of 12.7
cm as the effect of reflections from the plate edges caused significant discrepancies at a
distance of 15.24 cm. Again for the DFEM, the smulated point receivers were modeled
both on top and bottom of the plate to allow eimination of the symmetric mode components

inthe signals.

For the DFEM, only ten elements were used through the thickness for a cell size of 0.254
mm. The cell aspect ratio was unity. Thislarger cell size was adequate for these
calculations because of the low frequencies (and thus long wavelengths) in the flexural
mode signals. However, because of the larger element size, there was a correspondingly
larger source diameter which could have aminimum value of only four timesthe cell size. It
ispossible that thislarger source diameter may have contributed to discrepancies between
the DFEM results and those from MPT in which the point source was again used. As

before, alinear ramp source with 0.1 s rise time was used with an amplitude of 1 N.

Theresults for the DFEM and MPT models for propagation along the 0° direction at
distances of 7.62 and 12.7 cm are shown in Fig. 3. Figures4 and 5 show similar results for

propagation along the 45° and 90° directions respectively. Asthese figures show, the

11



agreement isgood. Some discrepancy dueto differencesin reflectionsis observed at later

times in the waveforms.

SUMMARY AND CONCLUSIONS

Two theoretical methods for predicting flexura plate mode acoustic emission waveformsin
thin plates were compared. Thefirst was adynamic finite el ement method (DFEM) and the
second was based on anormal mode solution to Mindlin plate theory (MPT). Both
methods were used to calculate the response of aplate to an out of plane source on the
surface of a plate for both isotropic (aluminum) and anisotropic (unidirectional
graphite/epoxy composite) materials. In general, good agreement between the two methods
was observed. Discrepancies at long timesin the waveforms were due to differencesin the
contributions from reflections from plate edges from different specimen geometries and/or
boundary conditions for the two models. Sincethe DFEM is based on exact linear
elagticity and has been previoudy verified by comparison with experimental measurements,
the observed differences between the two techniques at shorter times, not caused by

reflection differences, were attributed to the approximate nature of MPT.

Both methods allow calculations of waveformsin finite geometry specimens and can be
used for isotropic and anisotropic media. However, since the DFEM is based on exact
linear eladticity, it provides the displacements from all modes, symmetric and antisymmetric,
while the MPT provides only the flexura plate mode (lowest order symmetric mode).
Other plate theories can be used for the calculation of the extensiona plate modes, but
typically do not agree as well with experiment or full elasticity solutions. The DFEM can
also be used to model arbitrary specimen geometries and source configurations, while MPT
islimited to rectangular or circular geometries and much more limited source
configurations. However, the trade-off for the enhanced capabilities of the DFEM isthe

significant computational intensity for this method. It requires workstation class computers

12



with significant memory and lengthy run times. The normal mode solution for MPT can be

calculated on a personal computer in only afew minutes.

In discussing how these models might compare with signals generated by real AE sources
in plates, it is noted that sources with alarge out-of-plane or bending component generate
preferentialy large flexural plate modes. Such sources include impact, delamination in
composites, and cracks near the surface or not symmetric with the midplane of the plate.
Since both models predict the flexural mode response, they might both be applicable.
Because of the flexibility in modeling different source configurations and geometries, the
DFEM would obvioudy provide more accurate models for these real sources. However, in-
plane sources such as fatigue cracking in metals and matrix cracking produce large
extensional mode signals with little or no flexural modesiif the crack is symmetric with
respect to the midplane of the plate. For these real AE sources, MPT would not be useful as

it does not predict the extensional mode.
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Tablel. Propertiesof anisotropic materia (unidirectional graphite/epoxy)used in DFEM
model.

r 1550 kg/n?*

h 2.54 mm

o 147.1 GPa
Cp 4.11 GPa
C3=Cp, 4.11 GPa
Cy 3.09 GPa
Cy, 10.59 GPa
Cy3 =Cyy 10.59 GPa
Cu = 12(c, - Cy) 3.75 GPa
Cs 5.97 GPa
Ces = Css 5.97 GPa

Tablell. Properties of anisotropic material (unidirectional graphite/epoxy) used in MPT
model.

r 1550 kg/n??
h 2.54 mm
Dyq 198.7 Pam®
D,, 13.23 Pam’
Dy, 3.98 Pam’
Dgs 8.15 Pam’
Ay 7.94 MPam
Ass 12.64 MPam

15



FIGURE CAPTIONS

Fig. 1 - Comparison of DFEM (solid curve) and MPT (dashed curve) results for isotropic
(aluminum) material at propagation distances of (a) 7.62 cm, (b) 12.7 cm, and (c) 17.78 cm.

Fig. 2 - Comparison of DFEM (solid curve) and MPT (dashed curve) results for isotropic
(aluminum) material at propagation distances of (a) 7.62 cm, (b) 12.7 cm, and (c) 17.78 cm
on expanded time scales.

Fig. 3 - Comparison of DFEM (solid curve) and MPT (dashed curve) results for
anisotropic (graphite/epoxy) material along 0° direction at propagation distances of (a) 7.62
cmand (b) 12.7 cm.

Fig. 4 - Comparison of DFEM (solid curve) and MPT (dashed curve) results for
anisotropic (graphite/epoxy) material along 45° direction at propagation distances of
(@ 7.62cmand (b) 12.7 cm.

Fig. 5 - Comparison of DFEM (solid curve) and MPT (dashed curve) results for

anisotropic (graphite/epoxy) material along 90° direction at propagation distances of
(@ 7.62cmand (b) 12.7 cm.
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